技术应用-中国电源产业网-新能源与电源官方网站

浅析UPS与ATS的配合应用

2017-07-21   

中国电源产业网

导语:数据中心、工厂、医院、轨道交通等用电场所对供电系统的可靠性要求越来越高,除了在UPS应用方案和选型上不断变化之外,传统的一路电源供电也逐渐转化为两路电源甚至三路电源(比如两路市电一路油机)供电,那么这些电源如何合理转换才能跟UPS更好地匹配?本文就针对UPS与ATS的配合应用问题展开论述,分析存在的问题,并提出解决方案。

摘 要: 数据中心、工厂、医院、轨道交通等用电场所对供电系统的可靠性要求越来越高,除了在UPS应用方案和选型上不断变化之外,传统的一路电源供电也逐渐转化为两路电源甚至三路电源(比如两路市电一路油机)供电,那么这些电源如何合理转换才能跟UPS更好地匹配?本文就针对UPS与ATS的配合应用问题展开论述,分析存在的问题,并提出解决方案。

关键词: 两路电源; UPS与ATS; 零线中断;零地电压

Analyse the coordinated application of UPS and ATS

Zhang Yanhe

(Delta Greentech(China)Co.,Ltd.,Shanghai 201209,China)

Abstract: These places are more and more demand for the reliability of power supply system, Include: data centers, factories, hospitals, rail transportation and other places .In addition to the UPS application solutions and models continuous changes, The traditional single mains power supply also gradually changes into double power supply even three power supply(Such as double mains input and A generator power supply ). Then,how to do better coordinating application between the power supply and UPS?This article discuss the coordinated application of UPS and ATS,Analyse the problems,and propose a solution.

Key words: Double power supply; UPS and ATS; Zero line fault; Zero to earth voltage

1. 引言

从应用的角度看,UPS功能的变化经历了三个阶段:第一阶段是硬件保护,第二阶段是数据保护,第三阶段是系统可用性保护。从上世纪九十年代后期开始系统可用性变得越来越被重视,直至今天仍然是数据中心、工厂、医院、轨道交通等用电场所对UPS供电系统要求的最重要指标之一。

为了提升系统可用性,人们提出并实行了多种改善方案,比如:在UPS组合方案方面,由单机到串联热备份,再到并联冗余、双总线、分布式冗余等等;在UPS选型方面,由塔式一体机到各部分可热插拔更换的模块机;在配套的外围设备方面,选配更高性能的蓄电池,增加更加智能和人性化的监控管理系统,引入多路电源并配置ATS( Automatic transfer switching equipment 自动转换开关)等等。其中UPS跟ATS装置的配合应用目前比较普遍,并且也出现过不少问题,本文主要针对这一应用进行论述。

2. UPS与ATS配合应用的方案及分析

根据《供配电系统设计规范》(GB 50052-2009)规定,符合下列情况之一时,应视为一级负荷:

1)中断供电将造成人身伤害时。

2)中断供电将在经济上造成重大损失时。

3)中断供电将影响重要用电单位的正常工作时。【1】

一级负荷应由双重电源供电,当一电源发生故障时,另一电源不应同时受到损坏。【2】 

所以很多重要的用电场所通常都具有一路市电和一路油机或者两路市电和一路油机供电,这时就出现了UPS与ATS配合应用的情况。

目前UPS与ATS配合应用的方案(或者说是UPS接入两路输入电源的方案)主要包括三

大类:

1) 不采用外置的ATS

图1中的电源1和电源2一路接UPS的主输入,另一路接UPS的旁路输入,这种方案在市

场上的应用还比较多,但有逐渐减少的趋势。它的本质是将UPS内部的静态开关作为外部的ATS使用,优点是节省了ATS成本,但缺点也非常明显。

如果电源2中断,UPS就只能转电池工作,此时即便电源1正常也不能使用,只有当电池放完或者异常时才能转到电源1供电,并且是走的UPS旁路,没有经过UPS的整流和逆变处理,若此时电源1异常可能会导致负载不能正常工作甚至中断。

如果电源1中断电源2正常,UPS将工作在没有旁路的告警状态下,一旦UPS自身出现异常可能会直接导致负载中断。

同时这种方案还必须考虑两路电源的零线处理问题,如果处理不好可能会导致UPS或负载莫名其妙地出现告警或故障。

总之,这种方案没有充分发挥两路电源的效用,并且改变了UPS设备自身的设计初衷,不建议使用。

image.png

 

图1:不采用外置ATS的UPS双电源接线示意图(单机)

图2中两路电源分别进入UPS双总线供电系统的一条总线,彼此没有关联。这种方案虽然不存在零线处理和改变UPS设计初衷的问题,但也仅限于应用在后端没有通过STS (Static Transfer Switch静态转换开关 )供电的单电源设备状况下,并且当任一路输入电源中断时,系统都将运行于单总线供电状态,使系统可靠性大受影响,除非电池配置的足够多。

image.png

 

图2:不采用外置ATS的UPS双电源接线示意图(双总线)

2) 采用单一的ATS

该方案是指将两路电源经ATS转换成一路供给后面的UPS设备或者系统(如图3)。对于

UPS单机或者并机系统来说该方案是合理的,也比较常见,对于双总线系统来说该方案就显得比较单薄,存在ATS单点故障风险,此时最好采用ATS组合方案。

image.png

 

图3:采用单一ATS的UPS双电源接线示意图

3) 采用ATS组合

采用ATS组合的方案有多种,不同的组合方案最终的可靠性和成本可能会有很大的差异。

图4是传统的ATS组合UPS双总线接线示意图,图中有三路电源输入,经过两个ATS组合转化成一路供给UPS系统,因为后面有经过STS供电的单电源负载,所以在两条总线的UPS之间加装了LBS(Load Bus Synchronizer负载同步控制器)。

初步看来图4方案是比较合理的,但跟图5一比较就会发现其明显的不足,最主要的就是图4具有太多的单点故障点和相依性,可靠性明显不如图5。图5增加了ATS3和输入配电柜2,并将集中STS设备更改为分散的机架式ATS,根据机架式ATS的特性取消了LBS控制器,从而成为一套完全隔离的双总线系统,两条总线相互冗余,并且完全隔离,可靠性得到了极大的提升。在成本投资上,图5中的设备量虽然增加了,但增加的设备相对比较便宜,与取消的集中式STS设备和LBS设备相比,总体成本未必会有增加。

image.png

 

图4:传统的ATS组合UPS双总线接线示意图

image.png

 

图5:台达主推的ATS组合UPS双总线接线示意图

3. ATS的类型选用及差异分析

在上述的UPS与ATS配合应用的方案中,其实还存在一个重要问题,那就是ATS型号的选用,主要是指3极ATS和4极ATS的选用问题。

具体来分,4极ATS的转换包括三种类型:

1) 零线与相线同时断开和同时导通型

2) 零线比相线后断开而又先导通型

3) 零线先通后断,始终不中断型

对于3极ATS来说,零线始终是接牢的,不会断开,选用这类ATS重点是处理好两路电源的零线短接问题,不能强制短接,也不能形成不规范的多点接地。

零线与相线同时断开和同时导通型的4极ATS不存在将两路电源的零线直接短接问题,但会存在零线中断的现象,甚至在转换过程中出现零线电压扰动,将问题甩给后面的UPS和负载。同时也很难保证四路触点完全同步,如果零线在相线之前断开,可能会在零线上产生瞬变高压和电弧,腐蚀触点。

零线比相线后断开而又先导通型的4极ATS不存在零线触点拉弧现象,但仍存在零线闪断,甚至零线扰动的情况。

零线先通后断型的4极ATS需要处理好两路电源的零线间压差,在零线接通瞬间不能产生环路电流。

从上面的比较可以看出,各类型ATS的差异就在于零线要不要一起转换,怎么转换。对于3P3W+PE不需要接零线的UPS系统自然没有影响,但对于3P4W+PE,需要采取TN-S接线系统的UPS来说,这个问题就非常关键,有的用户没有处理好这一点就发生了问题。

3.1零线在UPS设备中的作用及断开后的风险

在UPS设备内部,零线的作用会随UPS的结构不同而有所差异。

图6是传统工频UPS的架构示意图,从中可以看出,零线只是在旁路和输出变压器的次级才会有,在整个UPS的内部主线路中都不会用到零线,输入输出的零线是直通的。这是因为工频UPS的整流器用的是三相SCR自然换相整流,即相控整流,不需要零线,整流后的直流母排电压只有一组,也没有中间抽头,逆变器是全桥逆变,仍然不需要零线。在UPS旁路和输出变压器的次级引入零线的作用就是为了给后面的负载提供工作零线,否则单相负载将无法工作。

其实在工频UPS内部还是有用到零线的地方的,那就是辅助电源的取电及逻辑电路的基准点。UPS通常是取自单相电源( L和N ),经转换后形成辅助电源提供给整流、逆变、静态开关的控制电路,以及DSP(或者CPU)、风扇等用电。同时UPS的逻辑电路也是以零线电位为参考点的,以确保检测电路的准确无误。

图7是一种高频UPS的架构示意图,从中可以看出,高频UPS中零线的用途会比工频UPS多很多。这是因为高频UPS的整流器多是采用IGBT整流,并且加装PFC电路,该工作方式是将输入交流电源的正半周和负半周分别处理,所以会用到零线。整流后的直流母排电压也是有正负两组,在零线和正负极之间分别跨接直流电容,作为滤波和续流之用。高频UPS的逆变器采用的是半桥逆变器,将正负两组直流电压分别逆变成交流输出的正负半周。高频UPS内部从前到后始终离不开零线,但输入输出间的零线也只是经过了高频滤波器的电感线圈后直通的。

image.png

     

image.png


 图6:工频UPS的架构示意图                     图7:高频UPS的架构示意图

对于三相电源来讲,零线中断将使电压重新分配,如图8所示,如果三相电源中每两相之间的电压是380V,单相负载1和负载2分别接在三相电源的单相上,正常情况下如图a,每路负载的输入电压都是交流220V,互不影响,负载能够正常工作。

如果零线中断,将会形成图b的情况,380V的交流电压同时加在负载1和负载2上,负载1和负载2分别分担的电压是:V1=R1*380/(R1+R2); V2=R2*380/(R1+R2)。

此时如果负载1和负载2的阻抗相等,则每路负载分担的电压是:380V/2=190V。

如果负载1的阻抗是5欧姆,负载2的阻抗是1欧姆,那么负载1上分得的电压将是317V,负载2上分得的电压将是63V,二者都不能正常工作,甚至还有可能会烧毁!

image.png

 

图8:三相电源在负载上的电压分配

在UPS供电系统中,UPS是下游负载的电源,也是上游电源的负载,当上游电源系统的零线中断时,UPS同样面临380V电压重新分配的问题,虽然不像UPS后面的负载那样可能存在严重的三相不平衡,但也会对UPS产生一定的影响,毕竟上游的电源不会像UPS输出的电源那样稳定和标准。

输入电源的零线中断或扰动会直接威胁到UPS的EMI电路中X电容和MOV,使其失去功效甚至炸裂,同时也可能会引起UPS整流、逆变、PFC等电路的控制异常,以及逻辑电路的基准点偏离,从而产生误侦测、误告警。

输入电源的零线中断或扰动也会对UPS后面的负载产生影响,因为不论是传统的工频机还是高频机,输入输出零线都是相通的,UPS和其后面的负载都是以上游电源的零线作为参考基准点。当输入电源的零线中断或扰动时UPS可能转电池工作,继续给后面的负载供电,但此时的零地电压可能会很高或者产生波动,有些负载对零地电压很敏感,可能会因为参考基准点的偏离而告警、误动作、不能正常工作,甚至烧毁,这些后果的产生都是由上游的电源零线异常导致的,不是UPS力所能及改善的!

3.2 对ATS类型选用的建议

IEC 62040-1-2和GB 7260.4中有明确说明:UPS的输出中性线依赖于输入电源或供电系统的中性线时,如果电源的外部隔离/转换等会引起危险,则安装说明书中应给出足够信息,防止该中性线缺失。【3】

CEMEP European UPS Guide也明确提出:许多UPS系统采用输入电源的中性线作为UPS 输出中性线的基准,当对UPS上游电源采用多电源隔离或转换时,应特别注意要确保输入电源中性线基准在UPS运行期间不会断开。【4】

由上述两条可知,UPS输出零线依赖于输入电源或供电系统的零线是有标准依据的,并且市面上常用的UPS也都是这样设计的。同时这类UPS对其上游所选用的ATS的要求也非常明确,那就是零线不能中断!能满足这种要求的ATS类型只有两种:3极ATS和零线先通后断,始终不会中断的4极ATS。

对于少数3P3W+PE不需要接零线的UPS来说,选用3极ATS自然也可以满足。

4. UPS与ATS配合应用的建议方案

由前面的2.UPS与ATS配合应用的方案及分析可知,在UPS与ATS配合应用的方案上,单机或并机系统适合采用单一ATS方案(如图3)。该方案结构简单,成本较低,配置和维护比较方便,可靠性也能满足要求,万一ATS故障可以人为打到旁路或者让UPS运行于电池状态下进行维护。

对于双总线或者更复杂的UPS供电系统建议采用ATS组合方案(如图5)。因为复杂的供电系统预示着更高的可靠性要求和更多的成本投入,增加一台ATS能够消除系统单点故障点从而提升整个系统的可靠性是非常值得的!(注意:ATS是不能直接并联的,否则切换不同步时会导致两路电源直接短路!)

针对上述两种方案的ATS选型,一定要选择3极ATS或者零线先通后断的4极ATS。这两种ATS的零线都是要求允许直接相连的,一个是始终连在一起,一个是转换过程短时连在一起,所以在连接之前一定要创造好可连接的条件,不能在连接时有零线环流产生。

实现零线可连接的具体方法可以有两种:

第一种方法是净化零线系统。主要从下面几个角度入手:

1) 保证上游变压器到ATS端的两条零线都是给UPS系统专用的,没有另外接不平衡负载或者易产生3次谐波的设备;

2) 变压器到ATS的两条零线线径够粗,接地电阻足够小;

3)ATS后面的零线不做重复接地 

保证了这几点在ATS端测量到两路电源的零地电压通常会接近于零,尤其是ATS离上游两台变压器比较近的情况下,这样在ATS前端的两条零线可以直接接到一起。

这种方法既适用于3极ATS也适用于零线先通后断的4极ATS。

第二种方法是加装隔离变压器。

如果ATS离上游变压器比较远,第一种方法的前两条无法满足,就需要加装隔离变压器来实现。对于3极ATS来说,可以在靠近ATS端给其中一路输入电源加装隔离变压器,并将隔离变压器二次侧的零线跟另一路输入电源的零线接到一起,这样就解决了两路输入电源的零线短接问题(如图9)。对于零线先通后断的4极ATS来说,需要在靠近ATS端给两路输入电源分别加装隔离变压器,并将隔离变压器二次侧的零线独立下地(如图10)。不论是3极ATS还是4极ATS都应避免零线在ATS后面再次接地,除非后面又有其它隔离变压器。

image.png

 

图9:UPS与3极ATS配合应用的建议方案

image.png

 

图10:UPS与零线先通后断的4极ATS配合应用的建议方案

5. 结语

系统可用性是当今UPS供电系统跟踪的最重要指标之一,为此很多单位都具备了两路电源甚至三路电源,如何把这些电源跟UPS供电系统很好地结合起来,主要就体现在UPS与ATS配合应用的方案上面,处理不好就会出现这样或者那样的问题。单机或并机系统适合采用单一ATS方案,对于双总线或者更复杂的供电系统适合采用ATS组合方案,同时对应的ATS型号如何选用,零线如何处理也都是关系到方案成败的关键!

参考文献

【1】《供配电系统设计规范》(GB 50052-2009)3.0.1-1

【2】《供配电系统设计规范》(GB 50052-2009)3.0.2

【3】《不间断电源设备 第1-2部分:限制触及区使用的UPS的一般规定和安全要求》(GB 7260.4-2008)4.9.22

【4】CEMEP European UPS Guide 9-6 isolation of neutral 

编辑:《电源工业》杂志

来源:张彦和/中达电通

标签:

相关信息

MORE >>
中国电源产业网官方在线QQ咨询:AM 9:00-PM 6:00
广告/企业宣传推广咨询:
活动/展会/项目合作咨询: 市场部
新闻/论文投稿/企业专访: 李先生
媒体合作/推广/友情链接: 市场部

中国电源产业网网友交流群:2223934、7921477、9640496、11647415

中国电源产业网照明设计师交流群:2223986、56251389

中国电源产业设计师QQ群:102869147

X